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1 Introduction

The purpose of the Simulation Validations Suite (SVS) is atidate each new version of the CMS simulation

software, comparing values associated with low level satioh quantities, typically derived from hits, geometry,

magnetic field or other Geant4 [1] objects, with referendees An expanded or full validation for special releases
will include higher level, physics, quantities. In the freuthe scope of the project will be extended to include
digis and fast simulation.

2 General Description

The validation process is divided into three stages to mad@tocess clear, and the software easy to maintain:

¢ Individual detector system, geometry, or field packagesaiothe fly” analysis on a set of validation sam-
ples, producing ROOT [2] output files. The initial packagedude: SimG4TackerValidation,
SimG4EcalValidation, SimG4HcalValidation, SimG4Muofidation, SimG4FieldValidation, and
SimG4GeomValidation. Each package consists of one or nests ssociated with sub-detectors within
a detector system, barrel/endcap and preshower in the €dise Bcal. Different tests have been defined
and configured in some sub-detectors to use either low-tev@bh-level simulation information in the val-
idation. The same test may be run many times under differmditions, or samples. ROQOT trees with
pre-processed information is written into ROOT browsahsfi This information typically includes bare
hit quantities or complex ones derived from hits or Geanféatb.

e Macros are run on the ROOT trees and process informationatitation objects, such as numbersin ASCII
files and/or histograms.

e OVAL is the integration tool, used for launching the Suiterfrthe SimG4Validation directory. Histogram
comparison tools, such as the Statistical Tool Kit [5] or RO®used to compare the “current” histograms
values with those stored in reference files. The differeacestored in ASCII files.

e OVAL is used to find differences between the ASCI| files withremt difference information and reference
ASCII files.

3 Sub-detector Package Description

3.1 Tracker
3.1.1 Description

TheSi nTATr acker Val i dat i on package is intended to test simulation of the tracking systemprised of
the Silicon Strip Tracker and Pixel Detector System. Thentar consists of the Tracker Inner Barrel (TIB),
Tracker Outer Barrel (TOB), Tracker Inner Disks (TID) ancdker End Cap (TEC) while the latter includes the
Pixel Barrel and Pixel End Cap. (The Pixel End Cap is alsorrefkto as the Forward Pixel Detector.) The tests
are performed for each subsystem separately due to theetiffe in their geometry.

TheSi nATr acker Val i dat i on package accesses collections of hits belonging to diffewdrsystems through
Tracker Hi t sObj ect and produces a ROOT tree with the simulated hit information.

Simple analyses are implemented in ROOT macro scripts hyzhistograms associated with the final quantities
to validate. In theSi mGATr acker Val i dat i on package, samples may be generated using the “Particle Gun”,
or read from an HBOOK file (HepEVT format) using the “NtuplezRler”. The two available options are controled
from the OvalFile file.

3.1.2 ROOT Tree Content

One assistant clasSi mHi t Tr acker Tr ee provides the interface to ROOT. The information stored @mROOT
tree is divided into two branches:

1. Global Information

Event Number
Run Number



Total Number of Incident Particles
Incident Particle type

Incident Particle Energy

Incident Particle Momentum
Incident Particle;

Incident Particlep

Number of vertices

\ertex coordinates

Total Number of Hits

2. Hit information

Subsystem type

ID of the detector unit (in Geant internal numbering)

Hit position (entry and exit point coordinates in the locgdtem, local position and direction)
Deposited Energy of Hit

ID of the track that produced a hit

Process and particle momentum and type

Time-of-flight

3.1.3 Validation Quantities

The comparison tests are performed on the following queastitonstructed from the ROOT tree leaves:

e Sample: Single muons, electrons or pions with =15 GeV, 1500 events in 12 bins gfin the range
—3<n<3:

e Quantities

Ener gy deposition

Distribution of track entry and exit points in x, y and z
Distribution of local x and y track entry point coordinates
Nunber of hits in each subsystem

Test variables are plotted separately for each subsysytexamples of Kolmogorov-Smirnov test output are
presented in Figs.1-12.

3.1.4 Run Configurations

The validation is performed currently at one level for eaelsker subsystem. But the package can easily accomo-
date running more tests with different input generated svarhese possible tasks are controled via the OVAL tool.
An OvalFile control file in the est sub-directory unde®i nTATr acker Val i dat i on is used to configure the
package.

The test using muons is started using the following command:

Oval vl run Tracker Test Et aBi nMuon

3.1.5 Validation Tests

OVAL is also used to detect differencies between currentraference values stored in two separate histogram
files. Statistical tools available in ROOTUnBI nned KSTest andBi nned Chi 2Test - are used to compare
the sample and the reference histograms.
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Figure 1: Kolmogorov-Smirnovtest example to compare enkags in different subsystems of the Silicon Tracker.
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Figure 2: Kolmogorov-Smirnov test example to compare lacabordinates of the hits in different subsystems of

the Silicon Tracker.
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Figure 3: Kolmogorov-Smirnov test example to compare lgoabordinates of the hits in different subsystems of

the Silicon Tracker.
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Figure 4: Kolmogorov-Smirnov test example to compare tiffeidince in entry and exit points along the local
x-axis of the tracks in different subsystems of the Silicoacker.
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Figure 5: Kolmogorov-Smirnov test example to compare tiffeidince in entry and exit points along the local
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Figure 6: Kolmogorov-Smirnov test example to compare tlffeidince in entry and exit points along the local

z-axis of the tracks in different subsystems of the Silicoacker.
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Figure 7: Kolmogorov-Smirnov test example to compare enkarss in different subsystems of the Pixel Tracker.
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Figure 8: Kolmogorov-Smirnov test example to compare lacabordinates of the hits in different subsystems of

the Pixel Tracker.
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Figure 9: Kolmogorov-Smirnov test example to compare lgoabordinates of the hits in different subsystems of
the Pixel Tracker.
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Figure 10: Kolmogorov-Smirnov test example to compare tifferénce in entry and exit points along the local
z-axis of the tracks in different subsystems of the Pixel Keac
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Figure 11: Kolmogorov-Smirnov test example to compare tifferénce in entry and exit points along the local
y-axis of the tracks in different subsystems of the Pixel Keac
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Figure 12: Kolmogorov-Smirnov test example to compare tifferénce in entry and exit points along the local
z-axis of the tracks in different subsystems of the Pixel Keac
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3.2 Electromagnetic Calorimeter
3.2.1 Description

The Si m4Ecal Val i dat i on package is associated with the Electromagnetic CalorinfE8AL), both the
barrel and the endcaps, as well as with the Pre-Shower gelotde The two tests implemented in

Si nTAAEcal Val i dati on are: ECal ori net er, andPr eShower . Both tests perform a preliminary on-the-
fly analysis of basic simulation quantities, hits a5t ep objects, and store the results in a ROOT tree contained
in a ROOT file. Simple analyses are implemented in ROOT mamnipts to produce histograms associated with
the final quantities to validate. In ti& nAEcal Val i dat i on package, samples may be generated using the
“Particle Gun”, or read from an HBOOK file (HepEVT format) ogithe “Ntuple Reader”. The two available
options are controlled from the C-Shell script file.

3.2.2 ROOT Tree Content

One assistant clasS| nHi t Ecal Tr ee provides the interface to ROOT. The information stored @mROOT tree
is divided into three branches:

1. Global Information

Event Nunber

Run Number

Total Number of I|ncident Particles

Particle Type of Every Incident Particle
Energy of Every Incident Particle

Monent um of Every Incident Particle

Vertex coordinates

Total Number of Hits in Barrel Calorineter
Total Number of Hits in EndCap Cal ori neter
Total Energy deposited in Barrel Calorineter
Total Energy deposited in EndCap Cal ori neter
Energy deposited in 1x1 crystal cluster
Energy deposited in 2x2 crystal cluster
Energy deposited in 3x3 crystal cluster
Energy deposited in 4x4 crystal cluster
Energy deposited in 5x5 crystal cluster
Energy deposited by EM Particles

Ener gy deposited by Hadrons Particles

2. Hitinformation
Ht position: etaHit, phiHit
Energy deposited of every Hit: energyEVH t, energyHadrHit
G obal tine

3. Step Information

Energy deposited in every X0 (radiation | ength): EXO[25].

3.2.3 \Validation Quantities

The comparison tests are performed on the following queastitonstructed from the ROOT tree leaves:

e Lower-Level Validation for ECalorimeter

— Sample: Photon; 30GeV;, 2000 Events
— Quantities
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Pl ot the occupancy (eta versus phi)
Pl ot 1-D histogramof E1, E4, E9, E16, E25
Pl ot 1-D histogramof Ratio: E1l/E4, E4/E9, E9/E16, E16/E25,
E1l/ E25, E9/E25
Pl ot the percentage of Energy deposited in Barrel and End-Cap
Pl ot the | ongitudinal devel opnent of Shower with a single Energy

e Higher-Level Validation for ECalorimeter

— Sample: Photon; 10GeV, 20GeV, 30GeV, 40GeV, 50GeV; 2000Eve
— Quantities

Pl ot the E25 resolution versus the energy of incident particle
Pl ot the |ongitudinal devel pment of Shower with multi-Energy

e Lower-Level Validation for PreShower

— Sample: Photon; 30GeV, 2000Evnets
— Quantities

Pl ot the occupancy (eta versus phi)
Pl ot 1-D histogramof E1, E4, E9, E16, E25
Pl ot 1-D histogram of Ratio: E1/E4, E4/E9, E9/El6, E16/E25,
E1l/ E25, E9/E25
Pl ot the percentage of Energy deposited in Barrel, End-Cap
and Pr eShower
Pl ot the |ongitudinal devel opment of Shower with single Energy

e Higher-Level Validation for PreShower

— Sample: Photon; 10GeV, 20GeV, 30GeV, 40GeV, 50GeV,; 2000Eve
— Quantities

Pl ot the E25 resolution versus the energy of incident particle
Pl ot the |ongitudinal devel opment of Shower with multi-Energy
Pl ot the coefficient of Lead absorption versus the energy of

i nci dent particle

3.2.4 Run Configurations

The validation is performed currently at two levels for eaftthe ECAL sub-systems: barrel/endcaps, and pre-
shower detectors. The package can therefore be run in Laetoe High-Level mode for the barrel/endcaps and
for the pre-shower. These four possible tasks are contratethe OVAL tool. An OvalFile control file in the

t est sub-directory unde®i mEcal Val i dati onis used to configure the package. The user can choose any
individual validation level or all using one of the followgrcommands:

Oval vl run Ecal Test. csh. Lower - Level

Oval vl run Ecal Test. csh. Hi gher-Level

Oval vl run PreShower Test. csh. Lower - Level
Oval vl run PreShower Test. csh. Hi gher-Level
Oval vl run

From above, it can be seen there are two C-Shell scrifutal Test . csh andPr eShower Test . csh. These
define the concrete task for two levels of validation viaisgtthe number of jobs, the location of input data,
renaming the root files and making histogram comparison éatvecurrent histograms and reference histograms
respectively.
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3.2.5 Validation Tests

In addition to the role in controling the tests, OVAL can alsused to detect differencies between current and
reference values stored in four separate ASCII files below.

Ecal Test. csh. Lower - Level . ref

Ecal Test. csh. Hi gher-Level . ref
PreShower Test . csh. Lower - Level . ref
PreShower Test . csh. Hi gher - Level . ref

The Statistics Toolkit is used to test the consistency betwle contents of current and reference histograms.
The classSmar t Test Hi st o is introduced to perform this task, by reading the data stamethe reference
ROQT file and the sample ROOT file . If the test requires binnata,chistograms are created from the ROOT
tree information, otherwise, unbinned data are stored tiove. In both cases, the Statistics Toolkit classes
are used to perform the comparison and output the resultsetoval log files. As currently implemented the
Smart Test Hi st o class is used as an alternate option to the ROOT macro analyshe example provided un-
dertheSi mEcal Val i dati on/t est directory,Conpar e. cc, two methodsgconpar eW t hChi 2Test ()
andconpar e2DW t hChi 2Test (), are used to compare the sample histograms with the refehéstograms.

Currently, all the quantities to validate at the lower-lefas given in 3.2.3) have been applied to the comparison
with the Chi2Test method between the sample data and thenefedata.

Finally, all the results will be saved to two postscript fil&amples of these are shown in Figs.13 and 14. The
1-D histograms from the sample and the reference are drattreisame plot to aid in evaluating the differences
between them, while for the 2-D histograms, such as the fodgin| profile and occupancy, are drawn in two plots
separately. Blue is used for the reference data and red éosample data. PV stands for the probability value
calculated with the Chi2Test method. Because currentlysémeple histograms and the reference histograms are
generated with the same version of OSCAR, the histograntedfto distributions are exactly same and all values
of PV are" 1" . In the future, the sample histograms will come from new wersiof OSCAR (or CMSSW) and
the PV values will give the differences between the resilteedifferent versions.

3.3 Hadronic Calorimeter
3.3.1 Description

TheSi nAHcal Val i dat i on package collects different type of information about HCAmuslated hits, using
bothEndOf Event andG4St ep G4-observers. It also performs some NxN cells cluster amabnd even cluster
finding with cone algorithm. The collected information isr&td in a ROOT tree. A csh scrippbb_nt upl e. csh
performs the code running under OVAL, plots the histograms$ @mpares some of them with the those in the
reference file by means of a ROOT macro. The input data sarmptaios 1000 single pions with p=30 GeV shot
at the center of a particular tower in the HCAL barrel withA)= (4,4).

3.3.2 ROOT Tree Content

The ROOT tree is divided into several branches. There is &clswvhich enables the information to be stored
at three levels of complexity. These three levels is denatetl, L2, L3 and the description of each block of
information will be denoted by a corresponding label.

The most essential primary information is collected in theek of CaloSimHit information (L1):

e nHits - number of hits;

e layerHits - number of HCAL layer to which the hit belongs;
e etaHits - hity;

e phiHits - hit;

e eHits - hit energy;

o tHits - hit time;
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Figure 14: The Results of Comparison with the Chi-Squaréféefreshower.
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idHits - hit ID number;

e jitterHits - hit jitter with respect to the expected time ofiaal.

There is a block of information dedicated to both cluster elfscwithin R=0.5 cone and 7x7 cells (hardwired
number, works currently only for HCAL barrel) in the evaledtaround user-definegand direction, see Eta0
and Phi0 description in the next subsection, (L2):

ecalNxNr - ECAL fraction in the cone within R= 0.5 around giwdirection;
hcalNxNr -idemfor HCAL;

hoNxNr -idemfor HO separately;

etotNxNr -idemfor the ECAL+HCAL (redundant information);

ecalNxN - ECAL fraction in the 7x7 cluster around given dtren;
hcalNxN -idemfor HCAL;

hoNxN -idemfor HO separately;

etotNxN -idemfor the ECAL+HCAL (redundant information).

There is a block of information about transverse NxN cluptefiles in the HCAL barrel (HCAL 1x1, 3x3, 5x5
and 7x7 cells hardwired) around user-defipehd direction (L2):

nixl - number of hits;
ilxI - sequential number of the square to which the hit bekyng
elx! - energy of the hit;

tIxI - arrival time of the hit.

There is a block containing information about the energydéjin the HCAL scintillator layers and depths (groups
of layers) as a sum over gllandy cells (L2):

nLayers - number of layers;

eLayer - energy in each layer;

nDepths - number of depths;

eDepth - energy in each depth;

eHO - energy in HO;

eHBHE - sum of the energy in HB and HE.

Information about HF subdetector (L2) :

elongHF - energy in the long fibers of HF;
eshortHF idemfor short fibers;
eEcalHF - energy collected in the entire ECAL;

eHcalHF -idemfor HCAL (barrel and endcap only).

Block of information about the highestrHet (L3) :

nJetHits - number of CaloSimHits in the jet (integer);
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¢ rJetHits - distance (in — ¢ space) of each CaloSimHit from the center of the jet;
e tJetHits - arrival time of each CaloSimHit;

e eJetHits - energy of each CaloSimHit.
Then there are global variables for this highestjét (L3):

e ecalJet - ECAL fraction of the jet energy;

e hcalJet idemfor HCAL;

e hoJet -idemseparately for outer calorimeter (HO);

e etotJet - total jet energy (redundant information);

e detaldet ) distance from "nominal value” (see Eta0 description in thetrsubsection);
e dphiJet -idemfor ;

e drJet -idemfor distance.

The latter three variables are used in case of the singlegbioating at the fixedy andy position to measure the
cluster deviation from the "nominal” position.

There is a block containing information about all the jetevabdefined E threshold (L3) :

e nJets - number of jets;
e jetE - energy of each jet;
e jetEta - each jet;

e jetPhi - each jetp.

In addition, there is a special variable containing a maskefwo highest- k (if any) - dijetM.

3.3.3 Validation Quantities

The validation of the new version of the simulation is asstiteebe done on the basis of a comparison of several
histograms (among more than 70 plotted in total) with thassipusly stored in the reference file using the
method of ROOT. There are 6 histograms for energy depositicdhe first 6 scintillator layers closest to the
ECAL, time distribution of all SimHits and energy-weightiahe distribution of SimHits in the 7x7 matrix of
ECAL+HCAL around the pion entry point. Also included in theneparison are distributions of the number of
SimHits in the ECAL and HCAL. All other histograms containdéttbnal information which might be required
for investigations in case of signifant discrepanceis atse by the main comparison test. Figures 15 and 16
show examples of two distributions among the 10 selectedtdonparison tests: the deposited energy in the
HCAL scintillator just behind ECAL and the energy-weightistribuion of the time of hits in the 7x7 matrix of
ECAL+HCAL towers around the pion direction.

3.3.4 Run Configurations

In the test area the default OSCARconfiguration.xml inctuolely ECAL and HCAL in the simulation. Also the
magnetic field if by default switched off in theor car ¢ file (actually named as hcalValidRC in the test area).

There are 11 external parameters which can be defined inahear c file cards listed in Table 1.

In the cluster analysis there is a choice to take into accootit ECAL and HCAL energy, or only the HCAL one
(default). The corresponding control card is the first on&dhle 1. The ECAL energy is always taken as it is,
while the HCAL energy for cluster analysis can be taken dseeibriginal CaloSimHit energy (default) or the one
multiplied by the corresponding sampling factors (sam&d@RCA), card 2 in Table 1.
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Figure 15: Energy deposition of the pion shower ifrigure 16: Energy-weighted timing of hits in the
the layer O (closest to ECAL). vicinity of pion direction.

Table 1: Set of SimpleConfigurable parameters defined asat@ards

Card nubmen Variable type| Defalut value Key name in .orcarc file
1 bool false SimG4HcalValidation:HcalClusterOnly
2 bool true SimG4HcalValidation:HcalSampling
3 float 0.5 SimG4HcalValidation:ConeSize
4 float le-20 SimG4HcalValidation:EcalHitThreshold
5 float le-20 SimG4HcalValidation:HcalHitThreshold
6 float 0. SimG4HcalValidation: TimeLowLimit
7 float 999. SimG4HcalValidation: TimeUpLimit
8 float 5.0 SimG4HcalValidation:JetThreshold
9 float 0.0 SimG4HcalValidation:Eta0
10 float 0.0 SimG4HcalValidation:PhiO
11 int 2 SimG4HcalValidation:InfoLevel

Card 3 defines the cone size of the jetfinder. Cards 4 and 5 setero minimal CaloSimHit energy for the ECAL
and HCAL respectively. Cards 6 and 7 define the time windowttierCaloSimHit arrival. Cut 8 sets a cut on
minimal jet energy (the default value, 5 GeV, is set for Heaipling = 1). Cards 9 and 10 stand for user-defined
n and ¢ direction (for single pion shooting at the fixed position)ar@ 11 defines which blocks of information
described in the previous subsection are stored in the R@$2T t

3.3.5 Validation Tests

Oval Fi | e control file in theSi mM34Hcal Val i dat i ontest directory contains the configuration of the test job.
It just defines thg¢ ob_nt upl e. csh as the main test script and assigns a default parameter
Si mAHcal Val i dation: | nf oLevel =2 (from Table 1) to it.
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3.4 Geometry
3.4.1 Description

The Si n4Ceonval i dat i on package writes out the number of volumes and materials forpeoing them
with a reference version using the OVAL tool. It also trackstjzles with neither physics nor magnetic field and
compares the total number of radiation lengths traverséttha end of the detector event-by-event.

If desired, it also constructs a few histograms and a ROO& with material budget information (number of
radiation lengths), and a text file with accumulated makéudget step-by-step.

3.4.2 Validation quantities
There are two different kinds of variables printed for tegtiith the OVAL tool:

e The geometry summary, thatis the total number of differestemals in the simulation, and the total numbers
of logical volumes, physical volumes and touchables (®pfeeach volume).

e The number of radiation lengths after traversing all thedetr. The events are read from an ntuple
[ af s/ cern. ch/ cns/ geant 4r ep/ gennt pl / mur andom di sp- p10000. nt pl ,that contains one
thousand muons of energy 10 TeV with randgiim the range-5.0 < n < 5.0 and randomp, and starting
at a displaced vertefe: = 8.3,y = 1.5,z = 6.3) mm, to avoid as much as possible tracking along volume
boundaries. In fact these muons behavgeentinosbecause there is no magnetic field, and all the physics
processes except transportation are switched off.

3.4.3 Material budget information

As well as running the test, the user may choose to produce saomput in the form of histograms, ROOT tree or
text file for help in understanding the differences with exggo the reference version.

Material Budget Histograms
If the parametefest Geonetry: writ eHi st osis set, a set of ROOT histograms is written into in a file whose
name is defined by this parameter:

e 1D profile histogram of material budget ys

e 1D histon

e 1D profile histogram of material budget ¥s

1D histo¢

2D profile histogram of material budget vs eta and phi

1D histon vs ¢

Material budget tree

If the parameteiTest Georretry: wri t eMBTr ee is set, material budget information will be written into a
ROOQT tree in a file whose name is defined by this parameter.rébecbntains for each track:

e MB: Total material budget (sum of step length divided by aidin length for all steps)
e ETA: 5 direction at start of track

e PHI: ¢ direction at start of track

If Test Geonetry: TreeAl | St epsis setto 1, also the information for each step is stored (emmax number
of 5000 steps per track are stored):

e DELTAMB: accumulated material budget
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X: X position

Y: Y position

Z: Z position
e VOLUID: volume ID (constructed in alphabetical order)

MATEID: material ID (constructed in alphabetical order)

Material budget Text File

If the parameteifest Geonetry: wri t eMBTxt is set, an ASCII file is filled with step-by-step information
about the volume traversed and the accumulated materigetbuwihtil this step. The name of the file is defined by
this parameter.

The file contains for each track a first line with

e Track number
e Eta direction at start of track

e Phidirection at start of track
then for each step:

e Accumulated track length (mm)

e \Volume name’

e \olume copy number

e Accumulated material budget (Number of radiation lengths)

e Material radiation length (rad. length / mm)
and at the end of track:

e Accumulated material budget

3.4.4 Run configuration

The oval prod command will run the test and compare the current values thitise in a reference file,
test Geonetry. ref. Several parameters control the extra output in the formigtbgrams, ROOT tree or
text file as explained above.

3.5 Field
3.5.1 Description

TheSi n4Fi el dval i dat i on package checks the tracking in the CMS magnetic field. Thetespares the
deviation at the end of the track in position and direction.

Y The volume that is printed corresponds to the volume trageis this step, which is different to the volume printed by
“ltracking/verbose” that is the volume the track is goingetaer after this step.
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3.5.2 Validation quantities

The ntuple/ af s/ cern. ch/ cns/ geant 4rep/ gennt pl /test _fi el d. nt pl is used for this test. It con-
tains 400 single muon events in four groups of 100 events different energies: 1, 10, 100, 1000 GeV. The
muons are run ashar ged geant i nos, given that the physics processes are switched off.

The deviation of these tracks after traversing all CMS is parad with a reference version. This deviation is
calculated in two directions: one perpendicular to thedhitack direction and ta, ¢ direction, and the other one
perpendicular to this first one and the initial track directiAlso the change in momentum projected in the above
mentioned two directions is checked, as well as the chang@dtic energy (that should be zero, except minimal
non-conservation by the field tracking).

3.5.3 Run configuration

Theoval prod command runs the test and compare the current values witie timoa reference file. The
reference file i est Fi el dProp. ref.

3.6 Muon System
3.6.1 Description

The Si ntAMuonVal i dat i on test checks the muon physics in GEANT4, by using 100 GeV mulinerites
out ROOT histograms of the relevant quantities and compeeset histograms with those from a reference file
using the OVAL tool.

3.6.2 Validation quantities
The test compares all the quantities that are relevant ohigfireenergy muon physics in GEANTA4.

The ntuplg af s/ cern. ch/ cns/ geant 4r ep/ gennt pl / si ngl e_ruon. nt pl is used to run 1000 muons
of 100 GeV. The secondary particles are killed before beincked.

For each muon it fills the following histograms:

e Energy lost

e Energy deposited

e Deviation in position

e Deviation in angle (deg)

e Number of tracking steps
And for each type of muon process, i.e. ionization, brerakéting,cte~ production, muon nuclear interaction,
decay and capture at rest, it makes histograms of the geantit

e Total energy taken by secondaries

e Energy of secondary particles

e Angle of secondary track with respect to primary track (muon
3.6.3 Run configuration

Theoval prod command will run the job producing the histograms and wilinpare them with those in a
reference filet est muon_ref . root.
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3.6.4 Validation tests

The histograms are compared with the reference ones at thef gob using the LCG PI Statistics Testing toolkit.
This tool makes a2 comparison and prints the probability to obtain that chiRigaor higher. This probability
value is compared with the value of a reference fiest MuonPhysi cs. r ef using the OVAL tool.

The following plots show an example of the histograms anddifference between the reference sample and
another one simulated with different random numbers. Ookeysles a linear scale while the other uses a log scale.
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Figure 17: Energy lost for 100 GeV muons traversing all theSCdétector

3.7 Global Validation
3.7.1 Description

TheSi nA4Val i dati ond obal package is currently under construction within the CMSS¥fework and

is intended to test simulation of the entire detector (ali-detectors in parallel) for expected types of physics
events with an active magnetic field. It is designed to alleproduction of the plots from the ORCA package
ExSi mHi t sSt ati sti cs within the new framework.

The package makes use of lBeobal Val i dat i on class which acts as an event producer within the framework
adding the relevant simulated information from each suleater to thePd obal Si nHi t object. This object is
then exported as a branch to the POOL outputdilayevent . r oot .

ROOT macro scripts will then be used to access the root fileezate the relevant histograms. Validation compar-
isons with respect to reference plots will then be performedmanner similar to the existing validation packages.

3.7.2 ROOT Tree Content

In addition to the standard CMSSW output, thél obal Si nHi t object is stored in a unique branch of the
si mevent . r oot output file. This object contains:

1. Monte Carlo

23



Nevents/50 ;eV

10° * New
- Reference
10°
10*
10°
10?

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Secondary Track Energy Muloni (MeV)

V_|_|T|'|T| IIIIII|T| IIIIII|T| T TTI

Figure 18: Energy lost for 100 GeV muons traversing all theSCdétector

Number of vertices from Geant4
Number of tracks from Geant4
Number of raw generated particles
Position (,y,z) of each Geant4 vertex
pr of each Geant4 track

Energy of each Geant4 track

. Electromagnetic Calorimeter

Number of Ecal hits

Energy of each Ecal hit

Time of flight for each Ecal hit
Global ¢ of each Ecal hit

Globaln of each Ecal hit

Number of preshower Hits

Energy of each preshower hit

Time of flight for each preshower hit
Global ¢ of each preshower hit
Globaln of each preshower hit

. Hadronic Calorimeter

Number of hits

Energy of each hit

Time of flight for each hit
Global¢ of each hit
Globaln of each hit
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4. Tracker

Number of Pixel hits

Global ¢ of each Pixel hit
Globaln of each Pixel hit

Time of flight of forward Pixel hits
Time of flight of barrel Pixel hits
Global R of barrel Pixel hits
Global Z of forward Pixel hits
Number of Silicon hits

Global ¢ of each Silicon hit
Globaln of each Silicon hit

Time of flight of forward Silicon hits
Time of flight of barrel Silicon hits
Global R of barrel Silicon hits
Global Z of forward Silicon hits

5. Muon

Number of hits

Global ¢ of hits

Globaln of hits

Time of flight for DT hits
Global R of DT hits

Time of flight for CSC hits
Global Z of CSC hits

Time of flight for RPC barrel hits
Global R of RPC batrrel hits
Time of flight for RPC forward hits
Global Z of RPC barrel hits

3.7.3 Validation Quantities

Validation studies will be performed on a subset of thes@abées as best determined by future studies.

3.7.4 Run configuration

The creation of the initial root file is handled as a typical E8MWV job, using the unP. cf g configuration file to

set the initial data source and other running conditiongHersimulation. The file used for this package can be
foundin theSi M= Val i dati on/ A obal / t est subdirectory of the CMSSW package. The code is run using
thecnmsRun -p runP. cf g command.

ROOT macros will be written which create the full suite oftslas found in the ol&xSi nHi t sSt ati sti cs
package as well as the plots of interest for the current aibid.

In the future, the validation will be performed using the QWol as with the existing simulation packages.

3.7.5 Validation tests

The validation will be performed using statistical toolsi#able in ROOT including the Kolmogorov-Smirnov test
and they? test.

4 Integration and Optimization

The tool of choice for the integration of the SVS is OVAL, viers3.5.0. OVAL is a testing tool created to help
developers to detect unexpected changes in the behavibewnfdoftware. Detailed information on the OVAL
project may be found in Ref. [3].

OVAL includes the following features:
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Executes shell commands and scripts.

Compiles and links validation programs.

e Runs the test programs and scripts within a specified Unik@mment.

e Creates on the fly the needed configuration parameter setesipue-defined external configuration files.
e Executes recursively a user-specified set of targets,dirgya hierarchy of subdirectories.

¢ Allows modular, configurable sub-tests within one subdosc
The SVS is executed from tHeSi mG4Val i dat i on base directory, using the following set of commands:

eval ‘scranvl runtime -csh’
oval vl prod -nb [targetl, target2..]

Here the- nb key indicates the no-build mode, since the suite librarigisa® included in the simulation software
distribution from CVS. It is up to the user to execute the dheibmmands in case a modification is made to one or
more package. If no specific target is given, every test ipatkages included in the Suite will be executed.

Although OVAL 350 has suited the needs of the SVS project at the current fagee improvements would
allow more flexibility. For example:

e OVAL cannot extract and execute a particular test from argtaeget/subdirectory, if ran at a higher level
in the hierarchy of subdirectories. For example, it is nadgtiole to run single tests within a sub-detector
package, such as ECalorimeter, Preshower, low-level mardeigh-level mode. OVAL will go down the
directory hierarchy, identify all sources of executabled acripts, and run all tests. This feature imposes a
severe limitation to the use of the modular structure of spatkages, such as SimG4TrackerValidation and
SimG4EcalValidation. In addition to reduced flexibilitiigre is a toll on the CPU performance.

e OVAL creates a run control file on the fly from a set of controtadeards specified in the OvalFile. Op-
tionally, separate environments may be defined to changeutheonditions of the test. For example,
SimG4TrackerValidation performs the same test sequénfial different pseudorapidity ranges. At the
beginning of each run of the test, the data cards associatbdhe pseudorapidity range are modified, and
the new values appended to the on-the-fly control file. Aligwelly, it is possible to use a run control file
resident on disk by providing its name as an argument to teewable. A different file may be passed to
the executable for each environment, that is each time time $ast is run under different conditions. As
an extension of the current features, it would be nice if OM#llowed inclusions, that is the possibility
of including disk resident run control files, as well as addifata cards or overriding their values. Since
the format of run control files are different in CMSSW, with ested structure which defines modules in
between brackets, it is not clear how it will be possible teroide data cards defined in a previous module.

e OVAL always requires a reference file in order to execute fr@d” command, which includes the “diff”
step. Otherwise, the tool skips even the “run” step for theletarget.

We are aware that OVALS_8 has been released recently. The new release of the tootdésatmportantimprove-
ments over version_8_0, including several bug fixes that were of a concern to us. lak @ switch to OVAL
5.9.8 in the near future. We also plan to continue the dialog viithdevelopers team for further upgrades.

5 Comparison Test Optimization Studies

A validation of a simulation against real physics data ohweihother simulation version relies on comparing two
sets of data. There are a number of choices in this compansdimcluding what type of data or distributions to
compare as listed in the preceding sections. These chaieekia to the statistical nature of the comparison. For
example, the number of events to generate, the type oftatatitest €.g.x? or Kolmogorov-Smirnov) to use, and
whether to use binned distributions (histograms) or undihfevent-by-event) data. In this section we present a
summary of the results of our studies. More details can beddau a separate CMS Note [4].

Studies were done using the Kolmogorov-Smirnov (KS) aAdests. For the Kolmogorov-Smirnov test, we
performed the studies both for unbinned and binned dataerSkesoftware methods were used for the tests, these
are listed below.
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1. TH1:: KolmogorovTest from ROOT, which is for 1-dimensadhistograms (binned data).
2. TMath::KolmogorovTest from ROOT, which can be used fathdminned and unbinned data.

3. StatisticsTesting::KolmogorovSmirnovComparisorgithm from the GEANT 4 HEP Statistics Project,
which is an external tool included in the LCG Physics IntegfPI) project [5]. This can be used for both
binned and unbinned data.

4. Our own user code to implement the KS test for both binnelduatinned data, since the TMath implemen-
tation had some problems as explained in the separate CMS[#ot

5.1 Optimization study procedure

The evaluation consisted of the following steps:

1. Create 500 pairs of data sample and reference data. Bagesand reference data set has 1000 data points
taken randomly from the same parent distribution. The pgatistribution shapes were chosen to represent
some of the distributions that might typically exist in thébdetector test data. The three parent distribution
shapes and variations used are listed below:

(a) Gaussian A Gaussian distribution with a mear)= 0 ando = 1, 0.9, 0.8 and0.5. The reference
always hagr = 1.

(b) Exponential An exponentially decaying functioa*/* where the reference has = 10 and the
variations have. = 9, 8, andb.

(c) Linear. A linear distributionmz + (1 — %), fromz = 0to z = 1, where the reference has slope
m = 0, and the variations have slopesiof, 0.2 and0.5.

Either the unbinned data is used or, in case the binned datdimmensional ROOT histogram with 100 or 10
bins is used. The lower and upper limits for the histograregab, 5) for the Gaussian functior{), 100)
for the exponential function; and, 1) for the linear function.

2. Compare each of the 500 samples with the correspondiagerefe, by performing the KS test using the
four methods given above, and recording and plotting theadvdity values (p-values) calculated with the
different methods.

3. Repeat the test using either 100, 500, 10000, or 10000@tseviVhere we keep the number of events in
the samples always equal to the number of events in the referdata that are compared to. The KS test
p-values for these are again recorded and plotted.

When two data sets each wifli events are compared using the KS test, the two cumulatitghbdisons are
compared and the maximum differenb&:**(z) is determined) One then determines, if the two data sets are
drawn from the same parent distribution, with what protigbine would get a value ab3**(x) as large as, or
larger than that observed. We call this the p-value for thed€®

Figure 19 shows th®7%**(z), \/N/2D7**(z) and p-value distributions for comparing, using an unbink&d
test, 500 pairs of reference and sample data, for differemtters of events. Both the reference and sample data
are taken randomly from the same parent Gaussian distriibuiith a width of one. It can be seen that the correct
high statistics limit is being reachede. for high statistics the/N/2D3**(zx) distribution is of the expected
shape and thus the p-value distribution is approachinggf&dh

5.2 Discriminating power of comparison tests

We define two quantities to express the power of a given tesdifzriminating between two distributions that
are different, while correctly identifying that two didititions are actually the same (statistically). When two
distributions are drawn from the same parent function, thetion of the time that our test (wrongly) determines

2 The cumulative distribution is defined as follows: If a dagconsists of N values(, i = 1, N), and these are all ordered
so thatz; < z; wherei < j, the cumulative function iSx (z;) = n(x;)/N wheren(x;) is the number of values less than
or equal tax;.
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Figure 19: Results of the KS tests for unbinned data comgaeference data sets to samples where both reference

and samples have 100 (1st row), 500 (2nd row), 1000 (3rd roviPO00 (last row) events. All distributions are
taken randomly from a Gaussian with a widthlof(left) DR**; (middle)/N/2D7**; and (right) p-value.

they are different is called thialse-positivefraction. The other quantity we define is called tfiscrimination
efficiencyand is defined further below.

In the high statistics limit where all p-value distributoare flat and independent &f, one can select afv-
independent p-value to set the false-positive fractiom.dxample, if we accept that tests with a p-value less than
0.01 (1%) signifies that the two distributions are differghen the false-postive fraction is expected to be 0.01.
Similarly, if we take tests with a p-value less than 0.1 to et two distributions are different, the false-positive
fraction would be 0.1. The larger the false-positive fractthe more histograms will be flagged as different
when they could very well be the same (statistically). THeefgositive fraction therefore determines how many
histograms we have to look at manually. We want this to be adls® possible, though this is less important than
having a high discrimination efficiency for a validationkas

One cannot appreciate the discriminating power by justitopit the p-value in figure 19. For example, one cannot
see how much better a comparison using 1000 events is thamsargeonly 100 events. To do that we should look
at comparisons where the two distributions being comparetbien from different parent distributions.

Figure 20 shows the p-value distributions for comparing $€3@n reference data sets with= 1 with Gaussian
sample distributions with varying values ®f Results for comparisons using 1000 events per data sdtanmas

well as those from comparisons of data sets with 100 eveintanibe seen that the mean p-value decreases more
rapidly for the 1000 event sample comparisons, when the Skuwidth decreases. This means the discrimination
is far more effective when using 1000 event samples comparading 100 event samples. We need to express
this quantitatively.

When comparing two distributions that are actually différ¢hediscrimination efficiencis defined as the fraction
of time our test will find them different. For example, comparreference Gaussian with= 1 with a sample
Gaussian distribution with @ = 0.8 and each with 1000 events. If we set trégical p-valueequal to 0.02 as the
p-value below which a test will identify the two to be diffetethen from Fig. 20 we see that the discrimination
efficiency is about 0.5. l.e. in only about half the time wilewactually say the two distributions are different.
The false-positive fraction for this p-value would be ab@1@2 (if we were in the limiting high statistics case.)
Although this is a small false-positive fraction, the distnation efficiency is low. If we set the critical p-value to
0.2, the discrimination efficiency would be about 0.998, le/the false-positive fraction would be about 0.2, this
is much more preferable for our task at hand. It can be seeriftive scan the critical p-value from 0 to 1, we
can obtain a curve for the discrimination efficiency versalsd-postive fraction. Rather than rely on the limiting
case to get the false-positive fraction, we integrate thvalpe distributions (like those in Fig. 19) to obtain more
accurate results.

The discriminating power of a test is best shown by the disicration efficiency versus false-positive fraction
curve. We obtained these curves for a number of differenditioms.
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Figure 20: Results for p-values of KS tests for unbinned dataparing Gaussiarwr(= 1) reference data sets
with samples with different Gaussian widths: (tep)= 1, (2nd row)c = 0.9, (3rd row)s = 0.8, and (bottom)

o = 0.5. (left) Each of the 500 sample and reference data sets h&@ ev@nts each; (right) Each of the 500
sample and reference data sets have 100 events each.
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Figure 21: Efficiency in discriminating Gaussian distribas with different widths plotted against the false-
positive fraction as explained in the text. The results warined from KS tests for unbinned data comparing
reference data sets witN events andr = 1 to samples withV events and different Gaussian widths: (left)
o = 0.9, (middle)oc = 0.8, (right) o = 0.5. (green pentagramsy = 100, (cyan dots)N = 500, (magenta
crosses)V = 1000, and (blue double-crossed) = 10000.
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Figure 22: Efficiency in discriminating Exponential dibuitions with different decay constants plotted against
the false-positive fraction as explained in the text. Theulis were obtained from KS tests for unbinned data
comparing reference data sets withevents anch = 10 to samples withV events and different decay constants:
(left) A = 0.9, (middle) A = 0.8, (right) A = 0.5. (green pentagramgy = 100, (cyan dots)V = 500, (magenta
crosses)V = 1000, and (blue double-crossed) = 10000.
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Figure 23: Efficiency in discriminating linear distributis with different slopes plotted against the false-positiv
fraction as explained in the text. The results were obtafred KS tests for unbinned data comparing reference
data sets withV events and slope 0 to samples withV events and different decay constants: (left) sleftel,
(middle) slope- 0.2, (right) slope= 0.5. (green pentagramsy = 100, (cyan dots)V = 500, (magenta crosses)
N = 1000, and (blue double-crosse¥) = 10000.
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Figures 21, 22, and 23, show the results for comparing Gausskponential, and linear distributions, respectively.
Each discrimination efficiency versus false-positive plmtains the results for comparisons using 100, 500, 1000

or 10000 event samples.

As expected, there is a compromise between discriminaffamemcy and false-postive fraction. Higher discrim-
ination efficiencies leads to higher false-positive fraiei. Also with 10000 events, a near 100% discrimination
efficiency is possible at small false-positive fractionggrefor smaller (10%) differences between the reference
and sample distributions. Conversely, acceptable disaation efficiencies using 100 event samples are only pos-
sible if one accepts false-positive fractions of almost%0Q0nless the reference and sample distributions are very
different. The actual choice of the number of events to udétsted by the size of the difference one wants to de-
tect. For detecting-20% differences in Gaussian or exponential distributi@@80 event samples give reasonable
discrimination efficiency without too high a false-positifraction. Linear distributions, (probably distributin
that change more slowly) seem to require larger event sanplebtain the same discrimination power.

5.3 Using unbinned and binned data for KS test comparisons

The intent of the validation package is to use histogramnaeidbles for comparisons rather than unbinned data,
as histograms take up much less storage and are easier te laaddvisualize. In this section we compared the
results of using the KS test for binned and unbinned dategedise effect on the discrimination power when the

data are binned.

The Kolmogorov-Smirnov test is intended for unbinned datayever, if one understands the issues, there is no
real problem with using it for binned data. The basic issuaas the deviatiorDR** will not be distributed as
expected so that the probability distribution will not be,fleven in the high statistics limit. This means that the
calculated p-value using the standard (unbinned) algarignot “correct”. We can still use the KS test for binned
data, we just cannot rely on the p-value returned by theadstlbw the expected distribution. Since we can obtain
the p-value distribution ourselves in a Monte Carlo study,de not have to make this assumption.

set E+F+A+D_unbinned(point)+bins100(line)_Gaus(0,0.5)

set E+F+A+D_ )+bins100(line)_Gaus(0,0.8) |

set E+F+A+D_L )+bins100(line)_Gaus(0,0.9)
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Figure 24: Efficiency in discriminating Gaussian distribas with different widths plotted against the false-
positive fraction as explained in the text. The results walsained from KS tests for unbinned data (points)
and binned data using 100 bins (line). Comparisons are fos phreference data withv events and = 1 with
samples containingy events and different Gaussian widths: (left= 0.9, (middle)o = 0.8, (right) c = 0.5.
(green pentagrams, dot-dash lim€) = 100, (cyan dots, dotted lineN = 500, (magenta crosses, dashed line)
N = 1000, and (blue double-crosses, solid lin€)= 10000.

Figure 24 shows the results for comparing the differentithistions using the KS test with unbinned data with
the results using binned data. Each discrimination effagierersus false-positive plot contains the results for
comparisons using 100, 500, 1000 or 10000 event samples.

One would have expected that the KS test using unbinned ddiae & more powerful discrimination tool than
when using binned data. This would be expected to be moreadadtie as the number of bins used is decreased.
These results and those for comparing exponential and ldistibutions show surprisingly that the KS test when

31



using binned data can be equally as powerful as when usingedb data. However the same performance in
discrimination efficiency at a given false-positive fractis achieved at a higher p-value when using binned data.
This is shown in Figs. 25.

set E+F+A+D_KS_unbinned(point)+bins100(ine)_Gaus(0,1)

set E+F+A+D_KS_unbinned(point)+bins100(line)_Exp(10.0)

set E+F+A+D_KS_unbinned(point)+bins100(line)_Rndm()
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Figure 25: The p-value needed to obtain a given false-pesitaction, comparing results from KS tests for
unbinned data (points) and binned data using 100 bins (I@ejnparisons are for pairs of reference data with
events with samples containidg events, and for the different distributions (left) Gaussianiddle) exponential,
(right) linear. (green pentagrams, dot-dash line)= 100, (cyan dots, dotted linelN = 500, (magenta crosses,
dashed line)V = 1000, and (blue double-crosses, solid ling)= 10000.

5.4 Comparison of KS tests withy2-tests

They? test is a commonly used statistic for comparing if two disttions are from the same parent functioa.(
if they match.

We used a(? test statistic coded by us and is defined as follows. For tetmbirams, one with entrieg and the
otherm;, wherei = 1 to 100 (number of bins), and_ n; = > m; = N (same total number of entries), tyé is
given by:

2 (ni_mi)2 .
X ; e or i where (n; +m;) # Q)

The number of degrees of freedomdf= N,,.;, — 1. WhereN,, ., is the total number of bins wherg andm; are
not both zero. If all bins are populated théh,., = N. Thendfis one less thaiv,,.;, because we effectively
constrain the total number of entries in the two histogramtsetthe same. This counts as one constrai@tone
does not test the agreement of the total number of eventgitwih histograms. If alh; andm; are large enough
(e.g.larger than 5), it can be shown that statistic of Eq.(1) fei@y? distribution withV — 1 degrees of freedom.
Thus for large enoughV the p-value distribution will be flat.

Figure 26 shows the distributions gF, x?/ndf, and p-value using the the statistic of Eq.(1) for differtal
number of events. The two histograms were drawn from the sg@rent Gaussian function with a mean of zero
ando = 1. It can be seen that the p-value distribution approachewlikit for large/N.

The 2 statistic given by the ROOT TH1 class, TH1::Chi2Test, insi@m 4.04.02f of ROOT it is defined slightly
differently, but is the same when the two data samples havedme number of entries. However the number of
degrees of freedom by defaultiigli= N,,.;. Version 4.04.02f has an incorrect calculation of the pteas the
wrongy? andndfis used in the call to TMath::Prob to calculate the p-vaiu€his leads to a statistic that does not

%) The parameters passed, from inside TH1::Chi2Test, to TiRxibb isx?/2 andndf/2, whereas it should just be? and
ndf. This may be because of an earlier implementation of TMRtbb. Since the incomplete Gamma function is used,
the parameters passed to that function should be hajfttendndfvalues. However inside TMath::Prob itself, the passed
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Bniz

Figure 26: Results of? tests for binned data using 100 bins comparing referenaetdatamples where both
reference and sample data sets have 100 (1st row), 500 (20d1@00 (3rd row) or 10000 (last row) events. All
data are taken randomly from a Gaussian with a width. afhe user-defined definition gf is used as explained
in the text. (left)x?; (middle)x?/ndf; and (right) p-value.

follow an actualy? distribution and the probability is not flat. Neverthelessaso tested using this this statistic
“as-is”, since this is used in the validation packages, aadjet similar results to using our user-coded statistic.

Figures 27— 29 show the results for comparing Gaussian,rexyi@l, and linear distributions using the KS test
with binned data with the results of\@ test with 100 bins. Each discrimination efficiency versusefgositive
plot contains the results for comparisons using 100, 500010 10000 event samples. Results using both the
user-defined? statistic are shown.

These results seem to show that fffetest performs more poorly compared to the KS test.

5.5 Conclusions from Comparison Test Studies

The first preliminary conclusion is that the KS test usingneith data can be just as powerful in a discrimination
test as using unbinned data, but the p-value must be set lolar using binned data.

The second preliminary conclusion is that the KS test usingea data is preferred oveng test as it is a more
power discrimination tool.

These conclusions are preliminary because we are stitigryg understand two unexpected results:

1. The discrimination power when using the KS test is almiestsame using binned data as with unbinned,
and moreover, seems to be unaffected when the number ofdyieduced from 100 to 10.

2. The discrimination power in the? test is better with 10 bins than 100 bins, and for the Gausfigtribu-
tions, the 10 bins discrimination is even better than the é&S discrimination.

Results for comparisons to a (fixed) function is being dorfatiher check and better understand these results. A
more detailed and full report is under preparation [4].

6 Exernal Tools

OVAL [3] is the main tool used in SVS to control its executiamdaperform comparisons. This tool enables one
to compare values in an ASCII file with those in a reference filé&ne user defines a set of tolerances for the
quantities of interest, and OVAL returns a “DIFF” messagafnoutput file when the difference is outside the
tolerance range. The evaluation of the usage of OVAL in th& $xoject is included in Section 4. The SVS team

parameters are already divided by two.
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set E+F+A+D_KS(point)+Chi2(line)_bins100_Gaus(0,0.9) set E+F+A+D_KS(point)+Chi2(line)_bins100_Gaus(0.0.8) set E+F+A+D_KS(point)+Chi2(line)_bins100_Gaus(0.0.5)
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Figure 27: Efficiency in discriminating Gaussian distribas with different widths plotted against the false-
positive fraction as explained in the text. The results wabtained from KS tests for binned data (points) and
from the user-defineg?-tests for binned data (line) using 100 bins. Comparisoadarpairs of reference data
containingN events having = 1 with samples containingy events and different Gaussian widths: (left= 0.9,
(middle)o = 0.8, (right) 0 = 0.5. (green pentagrams, dot-dash lidé)= 100, (cyan dots, dotted liney = 500,
(magenta crosses, dashed liné)= 1000, and (blue double-crosses, solid lin€)= 10000.

set E+F+A+D_KS(point)+Chi2(line)_bins100_Exp(8.0) set E+F+A+D_KS(point)+Chi2(line)_bins100_Exp(5.0)

set E+F+A+D_KS(point)+Chi2(line)_bins100_Exp(9.0)
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Figure 28: Efficiency in discriminating Exponential disuitions with different decay constants plotted against the
false-positive fraction as explained in the text. The risswere obtained from KS tests for binned data (points)
and from the user-definegf-tests for binned data (line) using 100 bins. Comparisoadarpairs of reference
data containingV events having\ = 10 with samples containing/ events and different decay constants: (left)
A = 0.9, (middle) A = 0.8, (right) A = 0.5. (green pentagrams, dot-dash lifé)= 100, (cyan dots, dotted line)
N = 500, (magenta crosses, dashed liné)= 1000, and (blue double-crosses, solid limg)= 10000.
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set E+F+A+D_KS(point)+Chi2(line)_bins100_slope=0.1 set E+F+A+D_KS(point)+Chi2(line)_bins100_slope=0.2 set E+F+A+D_KS(point)+Chi2(line)_bins100_slope=0.5
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Figure 29: Efficiency in discriminating linear distributis with different slopes plotted against the false-positiv
fraction as explained in the text. The results were obtafram KS tests for binned data (points) and from the
user-defineq 2-tests for binned data (line) using 100 bins. Comparisoasarpairs of reference data containing
N events having slope 0 with samples containingy events and different slopes: (left) slepe).1, (middle)
slope= 0.2, (right) slope= 0.5. (green pentagrams, dot-dash limé)= 100, (cyan dots, dotted lineN = 500,
(magenta crosses, dashed lié)= 1000, and (blue double-crosses, solid lin€)= 10000.

is in contact with the OVAL developers, who are open to sutiges. Requests are coming as decisions are made
during the migration process to CMSSW.

Tools other than OVAL are being tested for histogram congi@ami The two obvious options are the Statistical
Tool Kit [5], and the tests available within ROOT [2].

The Statistical Tool Kit is a general purpose tool for statéd analysis, which follows the tool kit philosophy,
and is designed to be flexible and extensible. It is compebasgd, allowing re-use and integration in different
frameworks, and has no dependence on any specific analydis The user layer bridges the core statistical
component and the user’s analysis, which may be based aratiffframeworks such as AIDA or ROOT. The
user layer shields the user from the underlying algorithmd @esign, and only deal with the user’s analysis
objects and the choice of comparison algorithm. The kitently supports a very complete statistics software
suite for comparison of two binned and unbinned distrimgiancluding Anderson-Darling, Chi-squared, Fisz-
Cramer-von Mises, Tiku tests (binned), Creamer-von Mi&sdman, Kolmogorov-Smirnov, Kuiper, and Tiku
tests (unbinned). The Statistical Tool Kit is currentlyrimpused by the Geant4 physics validation group within the
LCG Simulation Validation project. The current version &fSSuses the Statistical Tool Kit in the Muon and Ecal

packages.

ROOT is an analysis framework widely used in running experita. ROOT is not a software project that special-
izes in statistical tools, but the Chi-square and KolmogeBmirnov tests are made available through methods of
its histogram class.

While the Statistical Tool Kit is a project specializing datsstical tools and provides a large variety of goodness-
of-fit tests, ROOT satisfies the current needs of the SVS, bmdsaone to perform the tests within the same macro
file used to analyze the ROOT trees produced by the validpokages. The most complete solution in the long
term could be to use the Statistical Tool Kit as an exterahty loaded into ROOT. This option would allow the
Simulation Validation Group, and CMS in general, to benefitf the large variety of tests in the tool kit, while

keeping the analysis within the ROOT framework.

The SVS team performed studies to verify the consistenaydsat the Chi-squared and Kolmogorov-Smirnov test
results obtained from the Statistical Tool Kit and from ROOT

6.1 Comparing Statistics Toolkit with ROOT Statistics Methods

As an initial step towards evaluating software tools fotist@al comparison of binned and unbinned samples,
we have tested the Chi-squared methods available in ROOThdpidStatisticsTesting package. ROOT v4.04.02
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and PI v1.3.3 were used in this test. It needs to be pointedhaatin this processes we used modified class
StatisticsComparator, with the interface to ROOT histaggaeplacing the default interface to AIDA histograms.
The modified source code was provided to us by the Statigtatsiy developers, via private communication.

The test is based on a series of 5,000 trials. Each trial owasteps :

e creating two 1-dimentional ROOT histograms (TH1F), witl®1ins in the range from 0.5 to 1.5 (the actual
number of bins is 102, with 0-bin to hold underflow, and bin 1®hold overflow)

o filling each histogram with 10,000 Gaussian distributecian seeds, of the same MEAN=0.5 and differ-
ento’s, 01=0.3 andr»=0.31

¢ performingy? test using ROOT TH1::Chi2Test() method, for the two histmas; underflow and overflow
of the distributions were included.

¢ performingy? test using the PI/StatisticsTesting Chi2ComparisonAtgor class; underflow and overflow
of the distributions were included

In each trial we looked at the two values of the probabilitg paalue, calculated with the use of these two different

software packages. The difference between the two pvalvak)je(ROOT)-pvalue(StatisticsTesting), is presented
in Fig. 30.

Entries 5000
Mean  0.007906
RMS 0.05476

Chi2 test : pvalue(ROQT) - pvalue(StatisticsTesting)

Figure 30: Comparison of pvalues obtained using ROOT antyubie Statistics Toolkit.

We have noticed that there were no difference in computiegythof the two binned samples. However, there
is a difference in computing the NDF. Since the number ofiestboth histograms was always the same, the
NDF is typically equal the number of bins minus 1. Howevee ROOT TH1::Chi2Test() methods checks if a
specific i-th (j-th, k-th, etc.) bin is empty in both histogra and, in this case, recursively reduces NDF by 1. In
the Chi2ComparisonAlgorithm of the Pl/StatisticsTesting NDF seems to be always equal the number of bins
minus 1. Further differences are likely to lay in the use &edént software (sub)packages to perform the necessary
mathematics involved in the calculation of the probabhilityparticular, the use of different implementations of the
Gamma-function.

As a cross-check, in each trial we have taken theand the NDF computed by the Chi2ComparisonAlgorithm
(provided cases where NDF was equal to the one computed byTR®::Chi2Test()) and recalculated proba-
bility using ROOT TMath::Prob() method. The result was ata/aractically identical to the one computed by the
ROOQOT TH1::Chi2Test() method, as shown in Fig. 31.

In the case of comparing two identical histogram$ & 0) both packages always calculate the probability to be 1.
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Entries 3851
Mean  2.111e-17
RMS 1.32e-15

Chi2 test : pvalue(ROOT) - pvalue(StatisticsTesting+TMath::Prob)

Figure 31: Comparison of pvalues obtained using ROOT amifjubie Statistics Toolkit when NDF is the same
and using the same function in both cases to calculate tHagfram they? and NDF value.

We have also performed timing tests for these two implentiemis of the Chi-squared test, based on the 5,000
trials. In the timing test each trial included

at the beginning of each trial, creating the two ROOT TH1Rdggams

filling each of these two ROOT histograms with 10,000 randam$distributed seeds.

performing the “Chi2” test by either the ROOT TH1::Chi2Testthod or the Chi2ComparisonAlgoritm.

printing the resulting?, NDF and pvalue.

deleting the histogram at the end of each trial.

ROOQOT TStopwatch timer was used to estimate the required @Bla. result, we found that the all-ROOT based
test required 53.93 sec to perform 5,000 trials. It is fursgtimated that most of the CPU went into creating,
filling and deleting the histograms and into printing theutsg information, while the amount of CPU required

to perform the “Chi2” test itself seemed to be negligibleeTést which employed the Chi2ComparisonAlgorithm
of the PI/StatisticsTesting required 5235.41 sec to perte000 trials. It has to be stressed that even in the case of
comparing two identical histogramgq{ = 0),the PI/StatisticsTesting still required 0.7 sec to process one trial.
The test was done on the cmsuaf.fnal.gov cluster (Intel CBGRz).

We would like to point out that it is not the goal or our studyirnteestigate whether this striking difference in the
amount of required CPU was due to details of the coding tegln{including heavy use of STL containers, often
nested, in the StatisticsTesting) or in the details of mathtéecal algorithms involved in the computations. For the
SVS task this timing difference is not so significant. It abbke more significant though for similar tasks done in
the online, such as might be done in the online Data Qualitpikdoing (DQM).

7 Maintenance and Operation

Each package developer/expert will maintain his/her owakpge. Either the production group or the operator on
duty will run the integrated Suite before each release andudowith the corresponding experts in case there are
differences with respect to reference values. Expertstaklt corrective measures if necessary.

37



8 Extensions

The current Suite validates simulation quantities fromi3€ar hit information. A natural extension is to incor-
porate digis to the validation process. This is the nextestdghe project. Another extension would check the fast
simulation with respect to full simulation reference data.

A longer term extension would be to include physics quagito compare. This will enable not only a comparison
of one simulation version with another, but also a compariddhe simulation with real data. Although a physics
validation of the simulation is complicated and likely to ene separately, once the correct distributions are
determined, they could be included in the SVS package sonhah a new version of either the simulation code
or the reconstruction code is created, the suite could be tasgutomatically compare with previous versions for
both simulation and real data. These could be done as partightly build of the code. More generally, some of
the distributions used in the SVS package would be the saegused also in the DQM, for example distributions
that monitor the alignment of the tracking detectors.
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